Appendix D — References
Aas, Kjersti, Martin Jullum, and Anders Løland. 2021. “Explaining
Individual Predictions When Features Are Dependent: More Accurate
Approximations to Shapley Values.” Artificial
Intelligence 298: 103502. https://doi.org/https://doi.org/10.1016/j.artint.2021.103502.
Adadi, Amina, and Mohammed Berrada. 2018. “Peeking
Inside the Black-Box: A Survey on
Explainable Artificial Intelligence
(XAI).” IEEE Access 6: 52138–60. https://doi.org/10.1109/ACCESS.2018.2870052.
Adebayo, Julius, Justin Gilmer, Michael Muelly, Ian Goodfellow, Moritz
Hardt, and Been Kim. 2018. “Sanity Checks for Saliency
Maps.” In Proceedings of the 32nd International
Conference on Neural Information Processing
Systems, 9525–36. NIPS’18. Red Hook, NY, USA:
Curran Associates Inc.
Alain, Guillaume, and Yoshua Bengio. 2018. “Understanding
Intermediate Layers Using Linear Classifier Probes.” arXiv. https://doi.org/10.48550/arXiv.1610.01644.
Alber, Maximilian, Sebastian Lapuschkin, Philipp Seegerer, Miriam
Hägele, Kristof T. Schütt, Grégoire Montavon, Wojciech Samek,
Klaus-Robert Müller, Sven Dähne, and Pieter-Jan Kindermans. 2019.
“iNNvestigate Neural Networks!”
Journal of Machine Learning Research 20 (93): 1–8. http://jmlr.org/papers/v20/18-540.html.
Alberto, Túlio C, Johannes V Lochter, and Tiago A Almeida. 2015.
“Tubespam: Comment Spam Filtering on Youtube.” In 2015
IEEE 14th International Conference on Machine Learning and Applications
(ICMLA), 138–43. IEEE.
Allaire, JJ, Yihui Xie, Christophe Dervieux, Jonathan McPherson, Javier
Luraschi, Kevin Ushey, Aron Atkins, et al. 2024. rmarkdown: Dynamic Documents for r. https://github.com/rstudio/rmarkdown.
Alvarez-Melis, David, and Tommi S. Jaakkola. 2018. “On the
Robustness of Interpretability
Methods.” arXiv. https://doi.org/10.48550/arXiv.1806.08049.
Apley, Daniel W., and Jingyu Zhu. 2020. “Visualizing the
Effects of Predictor Variables in
Black Box Supervised
Learning Models.” Journal of the
Royal Statistical Society Series B: Statistical Methodology 82 (4):
1059–86. https://doi.org/10.1111/rssb.12377.
Athalye, Anish, Logan Engstrom, Andrew Ilyas, and Kevin Kwok. 2018.
“Synthesizing Robust Adversarial Examples.” In
International Conference on Machine Learning, 284–93. PMLR.
Bach, Sebastian, Alexander Binder, Grégoire Montavon, Frederick
Klauschen, Klaus-Robert Müller, and Wojciech Samek. 2015. “On
Pixel-Wise Explanations for Non-Linear Classifier
Decisions by Layer-Wise Relevance
Propagation.” PLOS ONE 10 (7): e0130140. https://doi.org/10.1371/journal.pone.0130140.
Barrett, Tyson, Matt Dowle, Arun Srinivasan, Jan Gorecki, Michael
Chirico, Toby Hocking, and Benjamin Schwendinger. 2024. data.table: Extension of “data.frame”. https://CRAN.R-project.org/package=data.table.
Bau, David, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Torralba.
2017. “Network Dissection: Quantifying
Interpretability of Deep Visual
Representations.” In 2017 IEEE Conference
on Computer Vision and Pattern Recognition
(CVPR), 3319–27. https://doi.org/10.1109/CVPR.2017.354.
Biecek, Przemyslaw. 2018. “DALEX: Explainers for
Complex Predictive Models in r.” Journal of Machine Learning
Research 19 (84): 1–5. https://jmlr.org/papers/v19/18-416.html.
———. 2020. ceterisParibus: Ceteris
Paribus Profiles. https://CRAN.R-project.org/package=ceterisParibus.
Biggio, Battista, and Fabio Roli. 2018. “Wild Patterns:
Ten Years After the Rise of Adversarial Machine
Learning.” Pattern Recognition 84 (December): 317–31. https://doi.org/10.1016/j.patcog.2018.07.023.
Bilodeau, Blair, Natasha Jaques, Pang Wei Koh, and Been Kim. 2024.
“Impossibility Theorems for Feature
Attribution.” Proceedings of the National Academy of
Sciences 121 (2): e2304406120. https://doi.org/10.1073/pnas.2304406120.
Biran, Or, and Courtenay V. Cotton. 2017. “Explanation and
Justification in Machine Learning: A Survey.” In Proceedings
of the IJCAI-17 Workshop on Explainable Artificial Intelligence
(XAI). https://www.cs.columbia.edu/~orb/papers/xai_survey_paper_2017.pdf.
Borgelt, Christian. 2005. “An Implementation of the
FP-Growth Algorithm.” In Proceedings of the 1st
International Workshop on Open Source Data Mining: Frequent Pattern
Mining Implementations, 1–5. OSDM ’05. New York, NY,
USA: Association for Computing Machinery. https://doi.org/10.1145/1133905.1133907.
Breiman, Leo. 2001. “Random Forests.”
Machine Learning 45 (1): 5–32. https://doi.org/10.1023/A:1010933404324.
Brown, Tom B., Dandelion Mané, Aurko Roy, Martín Abadi, and Justin
Gilmer. 2018. “Adversarial Patch.” arXiv. https://doi.org/10.48550/arXiv.1712.09665.
Bühlmann, Peter, and Torsten Hothorn. 2007. “Boosting
Algorithms: Regularization,
Prediction and Model Fitting.”
Statistical Science 22 (4): 477–505. https://doi.org/10.1214/07-STS242.
Caruana, Rich, Yin Lou, Johannes Gehrke, Paul Koch, Marc Sturm, and
Noemie Elhadad. 2015. “Intelligible Models for
HealthCare: Predicting Pneumonia
Risk and Hospital 30-Day
Readmission.” In Proceedings of the 21th
ACM SIGKDD International
Conference on Knowledge Discovery
and Data Mining, 1721–30.
KDD ’15. New York, NY, USA: Association for Computing
Machinery. https://doi.org/10.1145/2783258.2788613.
Chen, Zhi, Yijie Bei, and Cynthia Rudin. 2020. “Concept Whitening
for Interpretable Image Recognition.” Nature Machine
Intelligence 2 (12): 772–82. https://doi.org/10.1038/s42256-020-00265-z.
Cohen, William W. 1995. “Fast Effective
Rule Induction.” In Machine
Learning Proceedings 1995, edited by
Armand Prieditis and Stuart Russell, 115–23. San Francisco (CA): Morgan
Kaufmann. https://doi.org/10.1016/B978-1-55860-377-6.50023-2.
Cook, R. Dennis. 1977. “Detection of Influential
Observation in Linear Regression.”
Technometrics 19 (1): 15–18. https://doi.org/10.1080/00401706.1977.10489493.
Dandl, Susanne, Christoph Molnar, Martin Binder, and Bernd Bischl. 2020.
“Multi-Objective Counterfactual Explanations.”
In Parallel Problem Solving from Nature –
PPSN XVI, edited by Thomas Bäck, Mike Preuss, André
Deutz, Hao Wang, Carola Doerr, Michael Emmerich, and Heike Trautmann,
448–69. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-58112-1_31.
Deb, K., A. Pratap, S. Agarwal, and T. Meyarivan. 2002. “A Fast
and Elitist Multiobjective Genetic Algorithm:
NSGA-II.” IEEE Transactions on Evolutionary
Computation 6 (2): 182–97. https://doi.org/10.1109/4235.996017.
DeLMA, and Will Cukierski. 2013. “The ICML 2013 Whale Challenge -
Right Whale Redux.” https://kaggle.com/competitions/the-icml-2013-whale-challenge-right-whale-redux.
Deng, Jia, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.
2009. “ImageNet: A Large-Scale
Hierarchical Image Database.” In 2009 IEEE
Conference on Computer Vision and Pattern
Recognition, 248–55. https://doi.org/10.1109/CVPR.2009.5206848.
Doshi-Velez, Finale, and Been Kim. 2017. “Towards a Rigorous
Science of Interpretable Machine Learning.” arXiv Preprint
arXiv:1702.08608.
Fanaee-T, Hadi, and Joao Gama. 2014. “Event Labeling Combining
Ensemble Detectors and Background Knowledge.” Progress in
Artificial Intelligence 2 (2): 113–27. https://doi.org/10.1007/s13748-013-0040-3.
Feinerer, Ingo, and Kurt Hornik. 2024. tm: Text Mining Package. https://CRAN.R-project.org/package=tm.
Feinerer, Ingo, Kurt Hornik, and David Meyer. 2008. “Text Mining
Infrastructure in r.” Journal of Statistical Software 25
(5): 1–54. https://doi.org/10.18637/jss.v025.i05.
Fisher, Aaron, Cynthia Rudin, and Francesca Dominici. 2019. “All
Models Are Wrong, but Many Are
Useful: Learning a Variable’s
Importance by Studying an Entire
Class of Prediction Models
Simultaneously.” Journal of Machine Learning
Research : JMLR 20: 177. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8323609/.
Flora, Montgomery, Corey Potvin, Amy McGovern, and Shawn Handler. 2022.
“Comparing Explanation Methods for Traditional
Machine Learning Models Part 1: An Overview of
Current Methods and Quantifying Their
Disagreement.” arXiv. http://arxiv.org/abs/2211.08943.
Fokkema, Marjolein. 2020a. “Fitting Prediction Rule Ensembles with
r Package Pre.” Journal of Statistical Software 92:
1–30.
———. 2020b. “Fitting Prediction Rule Ensembles with R
Package pre.” Journal of
Statistical Software 92 (12): 1–30. https://doi.org/10.18637/jss.v092.i12.
Freedman, David, and Persi Diaconis. 1981. “On the Histogram as a
Density Estimator:L2 Theory.” Zeitschrift
für Wahrscheinlichkeitstheorie Und Verwandte Gebiete
57 (4): 453–76. https://doi.org/10.1007/BF01025868.
Freiesleben, Timo, Gunnar König, Christoph Molnar, and Álvaro
Tejero-Cantero. 2024. “Scientific Inference with
Interpretable Machine Learning: Analyzing
Models to Learn About Real-World Phenomena.”
Minds and Machines 34 (3): 32. https://doi.org/10.1007/s11023-024-09691-z.
Friedman, Jerome H. 2001. “Greedy Function Approximation:
A Gradient Boosting Machine.” The Annals of
Statistics 29 (5): 1189–1232. https://doi.org/10.1214/aos/1013203451.
Friedman, Jerome H., and Bogdan E. Popescu. 2008. “Predictive
Learning via Rule
Ensembles.” The Annals of Applied
Statistics 2 (3): 916–54. https://www.jstor.org/stable/30245114.
Friedman, Jerome, Robert Tibshirani, and Trevor Hastie. 2010.
“Regularization Paths for Generalized Linear Models via Coordinate
Descent.” Journal of Statistical Software 33 (1): 1–22.
https://doi.org/10.18637/jss.v033.i01.
Fürnkranz, Johannes, Dragan Gamberger, and Nada Lavrač. 2012.
Foundations of Rule Learning.
Cognitive Technologies. Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-540-75197-7.
Garnier, Simon, Ross, Noam, Rudis, Robert, Camargo, et al. 2024.
viridis(Lite) - Colorblind-Friendly
Color Maps for r. https://doi.org/10.5281/zenodo.4679423.
Gauss, Carl Friedrich. 1877. Theoria Motus Corporum Coelestium in
Sectionibus Conicis Solem Ambientium. Vol. 7. FA Perthes.
Ghorbani, Amirata, Abubakar Abid, and James Zou. 2019.
“Interpretation of Neural Networks Is
Fragile.” Proceedings of the AAAI Conference on
Artificial Intelligence 33 (01): 3681–88. https://doi.org/10.1609/aaai.v33i01.33013681.
Ghorbani, Amirata, James Wexler, James Zou, and Been Kim. 2019.
“Towards Automatic Concept-Based Explanations.” In
Proceedings of the 33rd International Conference on
Neural Information Processing Systems, 32:9277–86.
832. Red Hook, NY, USA: Curran Associates Inc.
Goldstein, Alex, Adam Kapelner, Justin Bleich, and Emil Pitkin. 2015.
“Peeking Inside the Black
Box: Visualizing Statistical
Learning With Plots of
Individual Conditional
Expectation.” Journal of Computational and
Graphical Statistics 24 (1): 44–65. https://doi.org/10.1080/10618600.2014.907095.
Goodfellow, Ian J., Jonathon Shlens, and Christian Szegedy. 2015.
“Explaining and Harnessing Adversarial
Examples.” arXiv. https://doi.org/10.48550/arXiv.1412.6572.
Gorman, Kristen B., Tony D. Williams, and William R. Fraser. 2014.
“Ecological Sexual Dimorphism and Environmental Variability Within
a Community of Antarctic Penguins (Genus
Pygoscelis).” PloS One 9 (3): e90081. https://doi.org/10.1371/journal.pone.0090081.
Greenwell, Brandon M., Bradley C. Boehmke, and Andrew J. McCarthy. 2018.
“A Simple and Effective
Model-Based Variable
Importance Measure.” arXiv. https://doi.org/10.48550/arXiv.1805.04755.
Grömping, Ulrike. 2020. “Model-Agnostic Effects Plots for
Interpreting Machine Learning Models.” Reports in
Mathematics, Physics and Chemistry, Department II, Beuth University of
Applied Sciences Berlin Report 1: 2020.
Hahsler, Michael, Christian Buchta, Bettina Gruen, and Kurt Hornik.
2024. arules: Mining Association Rules
and Frequent Itemsets. https://CRAN.R-project.org/package=arules.
Hahsler, Michael, Sudheer Chelluboina, Kurt Hornik, and Christian
Buchta. 2011. “The Arules r-Package Ecosystem: Analyzing
Interesting Patterns from Large Transaction Datasets.”
Journal of Machine Learning Research 12: 1977–81. https://jmlr.csail.mit.edu/papers/v12/hahsler11a.html.
Hahsler, Michael, Bettina Gruen, and Kurt Hornik. 2005. “Arules –
A Computational Environment for Mining Association Rules
and Frequent Item Sets.” Journal of Statistical Software
14 (15): 1–25. https://doi.org/10.18637/jss.v014.i15.
Hamner, Ben, and Michael Frasco. 2018. Metrics:
Evaluation Metrics for Machine Learning. https://CRAN.R-project.org/package=Metrics.
Hastie, Trevor. 2009. “The Elements of Statistical Learning: Data
Mining, Inference, and Prediction.” Springer.
Heider, Fritz, and Marianne Simmel. 1944. “An
Experimental Study of Apparent
Behavior.” The American Journal of
Psychology 57 (2): 243–59. https://doi.org/10.2307/1416950.
Holte, Robert C. 1993. “Very Simple
Classification Rules Perform
Well on Most Commonly
Used Datasets.” Machine
Learning 11 (1): 63–90. https://doi.org/10.1023/A:1022631118932.
Hooker, Giles. 2004. “Discovering Additive Structure in Black Box
Functions.” In Proceedings of the Tenth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
575–80.
———. 2007. “Generalized Functional ANOVA
Diagnostics for High-Dimensional
Functions of Dependent
Variables.” Journal of Computational and
Graphical Statistics 16 (3): 709–32. https://doi.org/10.1198/106186007X237892.
Hornik, Kurt, Christian Buchta, and Achim Zeileis. 2009.
“Open-Source Machine Learning: R Meets
Weka.” Computational Statistics 24 (2):
225–32. https://doi.org/10.1007/s00180-008-0119-7.
Horst, Allison Marie, Alison Presmanes Hill, and Kristen B Gorman. 2020.
palmerpenguins: Palmer Archipelago
(Antarctica) Penguin Data. https://doi.org/10.5281/zenodo.3960218.
Horst, Allison M., Alison Presmanes Hill, and Kristen B. Gorman. 2020.
“Allisonhorst/Palmerpenguins: V0.1.0.” Zenodo. https://doi.org/10.5281/zenodo.3960218.
Hothorn, Torsten, Kurt Hornik, and Achim Zeileis. 2006. “Unbiased
Recursive Partitioning: A Conditional Inference Framework.”
Journal of Computational and Graphical Statistics 15 (3):
651–74. https://doi.org/10.1198/106186006X133933.
Hothorn, Torsten, and Achim Zeileis. 2015. “partykit: A Modular Toolkit for Recursive
Partytioning in R.” Journal of Machine Learning
Research 16: 3905–9. https://jmlr.org/papers/v16/hothorn15a.html.
Inglis, Alan, Andrew Parnell, and Catherine B. Hurley. 2022.
“Visualizing Variable Importance and
Variable Interaction Effects in
Machine Learning Models.”
Journal of Computational and Graphical Statistics 31 (3):
766–78. https://doi.org/10.1080/10618600.2021.2007935.
Janzing, Dominik, Lenon Minorics, and Patrick Blöbaum. 2020.
“Feature Relevance Quantification in Explainable AI: A Causal
Problem.” In International Conference on Artificial
Intelligence and Statistics, 2907–16. PMLR.
Kahneman, Daniel, and Amos Tversky. 1982. “The Simulation
Heuristic.” In Judgment Under Uncertainty:
Heuristics and Biases, edited by Amos
Tversky, Daniel Kahneman, and Paul Slovic, 201–8. Cambridge: Cambridge
University Press. https://doi.org/10.1017/CBO9780511809477.015.
Karimi, Amir-Hossein, Gilles Barthe, Borja Balle, and Isabel Valera.
2020. “Model-Agnostic Counterfactual Explanations for
Consequential Decisions.” In Proceedings of the
Twenty Third International Conference on Artificial
Intelligence and Statistics, 895–905. PMLR. https://proceedings.mlr.press/v108/karimi20a.html.
Karpathy, Andrej, Justin Johnson, and Li Fei-Fei. 2015.
“Visualizing and Understanding Recurrent
Networks.” arXiv. https://doi.org/10.48550/arXiv.1506.02078.
Kaufmann, Emilie, and Shivaram Kalyanakrishnan. 2013. “Information
Complexity in Bandit Subset Selection.”
In Proceedings of the 26th Annual Conference on
Learning Theory, 228–51. PMLR. https://proceedings.mlr.press/v30/Kaufmann13.html.
Kim, Been, Rajiv Khanna, and Oluwasanmi Koyejo. 2016. “Examples
Are Not Enough, Learn to Criticize! Criticism for
Interpretability.” In Proceedings of the 30th
International Conference on Neural Information
Processing Systems, 2288–96. NIPS’16. Red Hook,
NY, USA: Curran Associates Inc.
Kim, Been, Martin Wattenberg, Justin Gilmer, Carrie Cai, James Wexler,
Fernanda Viegas, and Rory Sayres. 2018. “Interpretability
Beyond Feature Attribution: Quantitative
Testing with Concept Activation Vectors
(TCAV).” In Proceedings of the 35th
International Conference on Machine
Learning, 2668–77. PMLR. https://proceedings.mlr.press/v80/kim18d.html.
Kindermans, Pieter-Jan, Sara Hooker, Julius Adebayo, Maximilian Alber,
Kristof T. Schütt, Sven Dähne, Dumitru Erhan, and Been Kim. 2019.
“The (Un)reliability of Saliency
Methods.” In Explainable AI:
Interpreting, Explaining and Visualizing
Deep Learning, edited by Wojciech Samek, Grégoire Montavon,
Andrea Vedaldi, Lars Kai Hansen, and Klaus-Robert Müller, 267–80. Cham:
Springer International Publishing. https://doi.org/10.1007/978-3-030-28954-6_14.
Koh, Pang Wei, Kai-Siang Ang, Hubert H. K. Teo, and Percy Liang. 2019.
“On the Accuracy of Influence Functions for Measuring Group
Effects.” In Proceedings of the 33rd International
Conference on Neural Information Processing
Systems, 32:5254–64. 472. Red Hook, NY, USA: Curran
Associates Inc.
Koh, Pang Wei, and Percy Liang. 2017. “Understanding Black-Box
Predictions via Influence Functions.” In Proceedings of the
34th International Conference on Machine
Learning - Volume 70, 1885–94.
ICML’17. Sydney, NSW, Australia: JMLR.org.
Koh, Pang Wei, Thao Nguyen, Yew Siang Tang, Stephen Mussmann, Emma
Pierson, Been Kim, and Percy Liang. 2020. “Concept
Bottleneck Models.” In Proceedings of the 37th
International Conference on Machine
Learning, 5338–48. PMLR. https://proceedings.mlr.press/v119/koh20a.html.
Kuhn, and Max. 2008. “Building Predictive Models in r Using the
Caret Package.” Journal of Statistical Software 28 (5):
1–26. https://doi.org/10.18637/jss.v028.i05.
Kuźba, Michał, Ewa Baranowska, and Przemysław Biecek. 2019. “pyCeterisParibus: Explaining Machine
Learning Models with Ceteris Paribus Profiles in
Python.” Journal of Open Source Software 4
(37): 1389. https://doi.org/10.21105/joss.01389.
Lapuschkin, Sebastian, Stephan Wäldchen, Alexander Binder, Grégoire
Montavon, Wojciech Samek, and Klaus-Robert Müller. 2019.
“Unmasking Clever Hans Predictors and Assessing What
Machines Really Learn.” Nature Communications 10 (1):
1096. https://doi.org/10.1038/s41467-019-08987-4.
Laugel, Thibault, Marie-Jeanne Lesot, Christophe Marsala, Xavier Renard,
and Marcin Detyniecki. 2017. “Inverse Classification
for Comparison-based Interpretability in
Machine Learning.” arXiv. https://doi.org/10.48550/arXiv.1712.08443.
Legendre, Adrien Marie. 1806. Nouvelles méthodes Pour
La détermination Des Orbites Des Comètes: Avec
Un Supplément Contenant Divers Perfectionnemens de Ces
méthodes Et Leur Application Aux Deux Comètes
de 1805. Courcier.
Lei, Jing, Max G’Sell, Alessandro Rinaldo, Ryan J. Tibshirani, and Larry
Wasserman. 2018. “Distribution-Free Predictive
Inference for Regression.” Journal of the
American Statistical Association 113 (523): 1094–1111. https://doi.org/10.1080/01621459.2017.1307116.
Letham, Benjamin, Cynthia Rudin, Tyler H. McCormick, and David Madigan.
2015. “Interpretable Classifiers Using Rules and
Bayesian Analysis: Building a Better Stroke
Prediction Model.” The Annals of Applied Statistics 9
(3): 1350–71. https://doi.org/10.1214/15-AOAS848.
Liaw, Andy, and Matthew Wiener. 2002. “Classification and
Regression by randomForest.” R News 2 (3): 18–22. https://CRAN.R-project.org/doc/Rnews/.
Lipton, Peter. 1990. “Contrastive
Explanation.” Royal Institute of Philosophy
Supplements 27 (March): 247–66. https://doi.org/10.1017/S1358246100005130.
Long, Jacob A. 2024. interactions:
Comprehensive, User-Friendly Toolkit for Probing Interactions. https://doi.org/10.32614/CRAN.package.interactions.
Lundberg, Scott M., Gabriel G. Erion, and Su-In Lee. 2019.
“Consistent Individualized Feature Attribution for
Tree Ensembles.” arXiv. https://doi.org/10.48550/arXiv.1802.03888.
Lundberg, Scott M., and Su-In Lee. 2017. “A Unified Approach to
Interpreting Model Predictions.” In Proceedings of the 31st
International Conference on Neural Information
Processing Systems, 4768–77. NIPS’17. Red Hook,
NY, USA: Curran Associates Inc.
Ma, Chiyu, Jon Donnelly, Wenjun Liu, Soroush Vosoughi, Cynthia Rudin,
and Chaofan Chen. 2024. “Interpretable Image
Classification with Adaptive Prototype-based
Vision Transformers.” arXiv. http://arxiv.org/abs/2410.20722.
Mahmoudi, Amin, and Dariusz Jemielniak. 2024. “Proof of Biased
Behavior of Normalized Mutual Information.”
Scientific Reports 14 (1): 9021. https://doi.org/10.1038/s41598-024-59073-9.
Merriam-Webster. 2017. “Definition of Algorithm.” https://www.merriam-webster.com/dictionary/algorithm.
Meschiari, Stefano. 2022. Latex2exp: Use LaTeX Expressions in
Plots. https://CRAN.R-project.org/package=latex2exp.
Meyer, David, Evgenia Dimitriadou, Kurt Hornik, Andreas Weingessel, and
Friedrich Leisch. 2024. E1071: Misc Functions of the Department of
Statistics, Probability Theory Group (Formerly: E1071), TU Wien. https://CRAN.R-project.org/package=e1071.
Meyer, Patrick E. 2022. infotheo:
Information-Theoretic Measures. https://CRAN.R-project.org/package=infotheo.
Miller, Tim. 2019. “Explanation in Artificial Intelligence:
Insights from the Social Sciences.” Artificial
Intelligence 267 (February): 1–38. https://doi.org/10.1016/j.artint.2018.07.007.
Mitchell, Rory, Joshua Cooper, Eibe Frank, and Geoffrey Holmes. 2022.
“Sampling Permutations for Shapley Value
Estimation.” Journal of Machine Learning Research
23 (43): 1–46. http://jmlr.org/papers/v23/21-0439.html.
Molnar, Christoph, Bernd Bischl, and Giuseppe Casalicchio. 2018.
“iml: An r Package for Interpretable
Machine Learning.” JOSS 3 (26): 786. https://doi.org/10.21105/joss.00786.
Molnar, Christoph, Giuseppe Casalicchio, and Bernd Bischl. 2018.
“Iml: An R Package for Interpretable Machine
Learning.” Journal of Open Source Software 3
(26): 786. https://doi.org/10.21105/joss.00786.
———. 2020a. “Interpretable Machine Learning – A
Brief History, State-of-the-Art and
Challenges.” In ECML PKDD 2020
Workshops, edited by Irena Koprinska, Michael Kamp,
Annalisa Appice, Corrado Loglisci, Luiza Antonie, Albrecht Zimmermann,
Riccardo Guidotti, et al., 417–31. Cham: Springer International
Publishing. https://doi.org/10.1007/978-3-030-65965-3_28.
———. 2020b. “Quantifying Model Complexity via
Functional Decomposition for Better
Post-hoc Interpretability.” In Machine
Learning and Knowledge Discovery in
Databases, edited by Peggy Cellier and Kurt Driessens,
193–204. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-43823-4_17.
Molnar, Christoph, Timo Freiesleben, Gunnar König, Julia Herbinger, Tim
Reisinger, Giuseppe Casalicchio, Marvin N. Wright, and Bernd Bischl.
2023. “Relating the Partial Dependence Plot
and Permutation Feature Importance to the Data
Generating Process.” In Explainable Artificial
Intelligence, edited by Luca Longo, 456–79. Communications
in Computer and Information Science. Cham:
Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-44064-9_24.
Molnar, Christoph, Gunnar König, Bernd Bischl, and Giuseppe Casalicchio.
2023. “Model-Agnostic Feature Importance and
Effects with Dependent Features – A
Conditional Subgroup Approach.” Data Mining and
Knowledge Discovery, January. https://doi.org/10.1007/s10618-022-00901-9.
Mothilal, Ramaravind K., Amit Sharma, and Chenhao Tan. 2020.
“Explaining Machine Learning Classifiers Through Diverse
Counterfactual Explanations.” In Proceedings of the 2020
Conference on Fairness,
Accountability, and Transparency, 607–17.
FAT* ’20. New York, NY, USA: Association for Computing
Machinery. https://doi.org/10.1145/3351095.3372850.
Murdoch, W. James, Chandan Singh, Karl Kumbier, Reza Abbasi-Asl, and Bin
Yu. 2019. “Definitions, Methods, and Applications in Interpretable
Machine Learning.” Proceedings of the National Academy of
Sciences 116 (44): 22071–80. https://doi.org/10.1073/pnas.1900654116.
Muschalik, Maximilian, Hubert Baniecki, Fabian Fumagalli, Patrick
Kolpaczki, Barbara Hammer, and Eyke Hüllermeier. 2024. “Shapiq:
Shapley Interactions for Machine
Learning.” arXiv. https://doi.org/10.48550/arXiv.2410.01649.
Nguyen, Anh, Jeff Clune, Yoshua Bengio, Alexey Dosovitskiy, and Jason
Yosinski. 2017. “Plug & Play Generative Networks:
Conditional Iterative Generation of Images in
Latent Space.” In 2017 IEEE
Conference on Computer Vision and Pattern
Recognition (CVPR), 3510–20. IEEE Computer
Society. https://doi.org/10.1109/CVPR.2017.374.
Nguyen, Anh, Alexey Dosovitskiy, Jason Yosinski, Thomas Brox, and Jeff
Clune. 2016. “Synthesizing the Preferred Inputs for Neurons in
Neural Networks via Deep Generator Networks.” In Proceedings
of the 30th International Conference on Neural
Information Processing Systems, 3395–3403.
NIPS’16. Red Hook, NY, USA: Curran Associates Inc.
Nicholas L. Crookston, and Andrew O. Finley. 2007. “yaImpute: An r Package for kNN Imputation.”
Journal of Statistical Software 23 (10). https://doi.org/10.18637/jss.v023.i10.
Nickerson, Raymond S. 1998. “Confirmation Bias:
A Ubiquitous Phenomenon in
Many Guises.” https://doi.org/https://journals.sagepub.com/doi/10.1037/1089-2680.2.2.175.
Olah, Chris, Alexander Mordvintsev, and Ludwig Schubert. 2017.
“Feature Visualization.” Distill. https://doi.org/10.23915/distill.00007.
Olah, Chris, Arvind Satyanarayan, Ian Johnson, Shan Carter, Ludwig
Schubert, Katherine Ye, and Alexander Mordvintsev. 2018. “The
Building Blocks of Interpretability.” Distill. https://doi.org/10.23915/distill.00010.
Papernot, Nicolas, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z.
Berkay Celik, and Ananthram Swami. 2017. “Practical
Black-Box Attacks Against Machine
Learning.” In Proceedings of the 2017 ACM
on Asia Conference on Computer and
Communications Security, 506–19. ASIA CCS
’17. New York, NY, USA: Association for Computing Machinery. https://doi.org/10.1145/3052973.3053009.
Pedersen, Thomas Lin. 2024. patchwork:
The Composer of Plots. https://CRAN.R-project.org/package=patchwork.
R Core Team. 2024a. R: A Language and Environment for
Statistical Computing. Vienna, Austria: R Foundation for
Statistical Computing. https://www.R-project.org/.
———. 2024b. R: A Language and Environment for
Statistical Computing. Vienna, Austria: R Foundation for
Statistical Computing. https://www.R-project.org/.
Rdusseeun, LKPJ, and P Kaufman. 1987. “Clustering by Means of
Medoids.” In Proceedings of the Statistical Data Analysis
Based on the L1 Norm Conference, Neuchatel, Switzerland. Vol. 31.
Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin. 2016a.
“Model-Agnostic Interpretability of Machine Learning.”
arXiv Preprint arXiv:1606.05386.
———. 2016b. “"Why Should I Trust You?":
Explaining the Predictions of Any
Classifier.” In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining, 1135–44.
KDD ’16. New York, NY, USA: Association for Computing
Machinery. https://doi.org/10.1145/2939672.2939778.
———. 2018. “Anchors: High-Precision Model-Agnostic
Explanations.” Proceedings of the AAAI Conference on
Artificial Intelligence 32 (1). https://doi.org/10.1609/aaai.v32i1.11491.
Robnik-Šikonja, Marko, and Marko Bohanec. 2018.
“Perturbation-Based Explanations of
Prediction Models.” In Human and
Machine Learning: Visible,
Explainable, Trustworthy and
Transparent, edited by Jianlong Zhou and Fang Chen,
159–75. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-90403-0_9.
Roscher, Ribana, Bastian Bohn, Marco F. Duarte, and Jochen Garcke. 2020.
“Explainable Machine Learning for Scientific
Insights and Discoveries.” IEEE
Access 8: 42200–42216. https://doi.org/10.1109/ACCESS.2020.2976199.
Rudin, Cynthia. 2019. “Stop Explaining Black Box Machine Learning
Models for High Stakes Decisions and Use Interpretable Models
Instead.” Nature Machine Intelligence 1 (5): 206–15. https://doi.org/10.1038/s42256-019-0048-x.
Schloerke, Barret, Di Cook, Joseph Larmarange, Francois Briatte, Moritz
Marbach, Edwin Thoen, Amos Elberg, and Jason Crowley. 2024.
GGally: Extension to “ggplot2”. https://CRAN.R-project.org/package=GGally.
Schmidhuber, Jürgen. 2015. “Deep Learning in Neural Networks:
An Overview.” Neural Networks 61 (January):
85–117. https://doi.org/10.1016/j.neunet.2014.09.003.
Scholbeck, Christian A., Christoph Molnar, Christian Heumann, Bernd
Bischl, and Giuseppe Casalicchio. 2020. “Sampling,
Intervention, Prediction,
Aggregation: A Generalized Framework for
Model-Agnostic Interpretations.” In Machine
Learning and Knowledge Discovery in
Databases, edited by Peggy Cellier and Kurt Driessens,
205–16. Communications in Computer and Information
Science. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-43823-4_18.
Selvaraju, Ramprasaath R., Michael Cogswell, Abhishek Das, Ramakrishna
Vedantam, Devi Parikh, and Dhruv Batra. 2017.
“Grad-CAM: Visual Explanations from
Deep Networks via Gradient-Based
Localization.” In 2017 IEEE International
Conference on Computer Vision
(ICCV), 618–26. https://doi.org/10.1109/ICCV.2017.74.
Shapley, Lloyd S. 1953. “A Value for n-Person Games.”
Contribution to the Theory of Games 2.
Shrikumar, Avanti, Peyton Greenside, and Anshul Kundaje. 2017.
“Learning Important Features Through Propagating Activation
Differences.” In Proceedings of the 34th International
Conference on Machine Learning - Volume
70, 3145–53. ICML’17. Sydney, NSW, Australia:
JMLR.org.
Simon, Noah, Jerome Friedman, Robert Tibshirani, and Trevor Hastie.
2011. “Regularization Paths for Cox’s Proportional Hazards Model
via Coordinate Descent.” Journal of Statistical Software
39 (5): 1–13. https://doi.org/10.18637/jss.v039.i05.
Simonyan, Karen, Andrea Vedaldi, and Andrew Zisserman. 2014. “Deep
Inside Convolutional Networks: Visualising Image
Classification Models and Saliency Maps.”
arXiv. https://doi.org/10.48550/arXiv.1312.6034.
Simonyan, Karen, and Andrew Zisserman. 2015. “Very Deep
Convolutional Networks for Large-Scale Image
Recognition.” arXiv. https://doi.org/10.48550/arXiv.1409.1556.
Slack, Dylan, Sophie Hilgard, Emily Jia, Sameer Singh, and Himabindu
Lakkaraju. 2020. “Fooling LIME and SHAP:
Adversarial Attacks on Post Hoc
Explanation Methods.” In Proceedings of the
AAAI/ACM Conference on AI,
Ethics, and Society, 180–86.
AIES ’20. New York, NY, USA: Association for Computing
Machinery. https://doi.org/10.1145/3375627.3375830.
Smilkov, Daniel, Nikhil Thorat, Been Kim, Fernanda Viégas, and Martin
Wattenberg. 2017. “SmoothGrad: Removing Noise by
Adding Noise.” arXiv. https://doi.org/10.48550/arXiv.1706.03825.
Staniak, Mateusz, and Przemyslaw Biecek. 2018. “Explanations of
Model Predictions with Live and breakDown
Packages.” arXiv. https://doi.org/10.48550/arXiv.1804.01955.
Strobl, Carolin, Anne-Laure Boulesteix, Thomas Kneib, Thomas Augustin,
and Achim Zeileis. 2008. “Conditional Variable Importance for
Random Forests.” BMC Bioinformatics 9 (1): 307. https://doi.org/10.1186/1471-2105-9-307.
Štrumbelj, Erik, and Igor Kononenko. 2011. “A General
Method for Visualizing and
Explaining Black-Box
Regression Models.” In Adaptive and
Natural Computing
Algorithms, edited by Andrej Dobnikar, Uroš Lotrič,
and Branko Šter, 21–30. Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-20267-4_3.
———. 2014. “Explaining Prediction Models and Individual
Predictions with Feature Contributions.” Knowledge and
Information Systems 41 (3): 647–65. https://doi.org/10.1007/s10115-013-0679-x.
Su, Jiawei, Danilo Vasconcellos Vargas, and Kouichi Sakurai. 2019.
“One Pixel Attack for Fooling Deep Neural
Networks.” IEEE Transactions on Evolutionary
Computation 23 (5): 828–41. https://doi.org/10.1109/TEVC.2019.2890858.
Sudjianto, Agus, Aijun Zhang, Zebin Yang, Yu Su, and Ningzhou Zeng.
2023. “PiML Toolbox for Interpretable Machine
Learning Model Development and Diagnostics.” arXiv Preprint
arXiv:2305.04214.
Sundararajan, Mukund, and Amir Najmi. 2020. “The Many
Shapley Values for Model Explanation.” In
Proceedings of the 37th International Conference on
Machine Learning, 9269–78. PMLR. https://proceedings.mlr.press/v119/sundararajan20b.html.
Sundararajan, Mukund, Ankur Taly, and Qiqi Yan. 2017. “Axiomatic
Attribution for Deep Networks.” In Proceedings of the 34th
International Conference on Machine Learning -
Volume 70, 3319–28. ICML’17. Sydney, NSW,
Australia: JMLR.org.
Szegedy, Christian, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and
Zbigniew Wojna. 2016. “Rethinking the Inception
Architecture for Computer Vision.” In
2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2818–26.
https://doi.org/10.1109/CVPR.2016.308.
Szegedy, Christian, Wojciech Zaremba, Ilya Sutskever, Joan Bruna,
Dumitru Erhan, Ian Goodfellow, and Rob Fergus. 2014. “Intriguing
Properties of Neural Networks.” arXiv. https://doi.org/10.48550/arXiv.1312.6199.
Tay, J. Kenneth, Balasubramanian Narasimhan, and Trevor Hastie. 2023.
“Elastic Net Regularization Paths for All Generalized Linear
Models.” Journal of Statistical Software 106 (1): 1–31.
https://doi.org/10.18637/jss.v106.i01.
Therneau, Terry, and Beth Atkinson. 2023. rpart: Recursive Partitioning and Regression
Trees. https://CRAN.R-project.org/package=rpart.
Tomsett, Richard, Dave Braines, Dan Harborne, Alun Preece, and Supriyo
Chakraborty. 2018. “Interpretable to Whom? A Role-based Model for Analyzing
Interpretable Machine Learning Systems.” arXiv. https://doi.org/10.48550/arXiv.1806.07552.
Tomsett, Richard, Dan Harborne, Supriyo Chakraborty, Prudhvi Gurram, and
Alun Preece. 2020. “Sanity Checks for Saliency
Metrics.” Proceedings of the AAAI Conference on
Artificial Intelligence 34 (04): 6021–29. https://doi.org/10.1609/aaai.v34i04.6064.
Tufte, Edward R, and Peter R Graves-Morris. 1983. The Visual Display
of Quantitative Information. Graphics press Cheshire, CT.
Urbanek, Simon. 2022. jpeg: Read and
Write JPEG Images. https://CRAN.R-project.org/package=jpeg.
———. 2024. rJava: Low-Level r to Java
Interface. https://CRAN.R-project.org/package=rJava.
Van Looveren, Arnaud, and Janis Klaise. 2021. “Interpretable
Counterfactual Explanations Guided by
Prototypes.” In Machine Learning
and Knowledge Discovery in Databases.
Research Track, edited by Nuria Oliver, Fernando
Pérez-Cruz, Stefan Kramer, Jesse Read, and Jose A. Lozano, 650–65. Cham:
Springer International Publishing. https://doi.org/10.1007/978-3-030-86520-7_40.
Van Noorden, Richard, and Jeffrey M. Perkel. 2023.
“AI and Science: What 1,600 Researchers
Think.” Nature 621 (7980): 672–75. https://doi.org/10.1038/d41586-023-02980-0.
Venables, W. N., and B. D. Ripley. 2002. Modern Applied Statistics
with s. Fourth. New York: Springer. https://www.stats.ox.ac.uk/pub/MASS4/.
von Jouanne-Diedrich, Holger. 2017. OneR: One Rule
Machine Learning Classification Algorithm with Enhancements. https://CRAN.R-project.org/package=OneR.
Wachter, Sandra, Brent Mittelstadt, and Chris Russell. 2018.
“Counterfactual Explanations Without Opening the Black Box:
Automated Decisions and the GDPR.” Harvard Journal of Law and
Technology 31 (2): 841–87.
Watson, David S., and Marvin N. Wright. 2021. “Testing Conditional
Independence in Supervised Learning Algorithms.” Machine
Learning 110 (8): 2107–29. https://doi.org/10.1007/s10994-021-06030-6.
Wei, Pengfei, Zhenzhou Lu, and Jingwen Song. 2015. “Variable
Importance Analysis: A Comprehensive Review.”
Reliability Engineering & System Safety 142 (October):
399–432. https://doi.org/10.1016/j.ress.2015.05.018.
Wickham, Hadley. 2007. “Reshaping Data with the reshape Package.” Journal of
Statistical Software 21 (12): 1–20. http://www.jstatsoft.org/v21/i12/.
Wickham, Hadley, Mara Averick, Jennifer Bryan, Winston Chang, Lucy
D’Agostino McGowan, Romain François, Garrett Grolemund, et al. 2019.
“Welcome to the tidyverse.”
Journal of Open Source Software 4 (43): 1686. https://doi.org/10.21105/joss.01686.
Witten, Ian H., and Eibe Frank. 2005. Data Mining: Practical Machine
Learning Tools and Techniques. 2nd ed. San Francisco: Morgan
Kaufmann.
Wood, S. N. 2017. Generalized Additive Models: An Introduction with
r. 2nd ed. Chapman; Hall/CRC.
Wood, S. N. 2003. “Thin-Plate Regression Splines.”
Journal of the Royal Statistical Society (B) 65 (1): 95–114.
———. 2004. “Stable and Efficient Multiple Smoothing Parameter
Estimation for Generalized Additive Models.” Journal of the
American Statistical Association 99 (467): 673–86.
———. 2011. “Fast Stable Restricted Maximum Likelihood and Marginal
Likelihood Estimation of Semiparametric Generalized Linear
Models.” Journal of the Royal Statistical Society (B) 73
(1): 3–36.
Wood, S. N., N., Pya, and B. S"afken. 2016. “Smoothing Parameter
and Model Selection for General Smooth Models (with Discussion).”
Journal of the American Statistical Association 111: 1548–75.
Wright, Marvin N., and Andreas Ziegler. 2017. “ranger: A Fast Implementation of Random Forests
for High Dimensional Data in C++ and
R.” Journal of Statistical Software 77 (1):
1–17. https://doi.org/10.18637/jss.v077.i01.
Xie, Yihui. 2014. “knitr: A
Comprehensive Tool for Reproducible Research in R.”
In Implementing Reproducible Computational Research, edited by
Victoria Stodden, Friedrich Leisch, and Roger D. Peng. Chapman;
Hall/CRC.
———. 2015. Dynamic Documents with R and Knitr. 2nd
ed. Boca Raton, Florida: Chapman; Hall/CRC. https://yihui.org/knitr/.
———. 2024. knitr: A General-Purpose
Package for Dynamic Report Generation in r. https://yihui.org/knitr/.
Xie, Yihui, J. J. Allaire, and Garrett Grolemund. 2018. R Markdown:
The Definitive Guide. Boca Raton, Florida: Chapman; Hall/CRC. https://bookdown.org/yihui/rmarkdown.
Xie, Yihui, Christophe Dervieux, and Emily Riederer. 2020. R
Markdown Cookbook. Boca Raton, Florida: Chapman; Hall/CRC. https://bookdown.org/yihui/rmarkdown-cookbook.
Yang, Hongyu, Cynthia Rudin, and Margo Seltzer. 2016. sbrl: Scalable Bayesian Rule Lists Model. https://CRAN.R-project.org/package=sbrl.
———. 2017. “Scalable Bayesian Rule Lists.” In
International Conference on Machine Learning, 3921–30. PMLR.
Yang, Zebin, Agus Sudjianto, Xiaoming Li, and Aijun Zhang. 2024.
“Inherently Interpretable Tree Ensemble
Learning.” arXiv. https://doi.org/10.48550/arXiv.2410.19098.
Zeileis, Achim, Torsten Hothorn, and Kurt Hornik. 2008.
“Model-Based Recursive Partitioning.” Journal of
Computational and Graphical Statistics 17 (2): 492–514. https://doi.org/10.1198/106186008X319331.
Zeiler, Matthew D., and Rob Fergus. 2014. “Visualizing and
Understanding Convolutional Networks.” In
Computer Vision – ECCV 2014, edited
by David Fleet, Tomas Pajdla, Bernt Schiele, and Tinne Tuytelaars,
818–33. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-10590-1_53.
Zhang, Zhou, Yufang Jin, Bin Chen, and Patrick Brown. 2019.
“California Almond Yield Prediction at the
Orchard Level With a Machine Learning
Approach.” Frontiers in Plant Science 10 (July):
809. https://doi.org/10.3389/fpls.2019.00809.
Zhao, Qingyuan, and Trevor Hastie. 2019. “CAUSAL
INTERPRETATIONS OF
BLACK-BOX MODELS.”
Journal of Business & Economic Statistics: A Publication of the
American Statistical Association 2019. https://doi.org/10.1080/07350015.2019.1624293.
Zhu, Hao. 2024. kableExtra: Construct
Complex Table with “kable” and
Pipe Syntax. https://CRAN.R-project.org/package=kableExtra.