References

“Definition of Algorithm.” 2017. https://www.merriam-webster.com/dictionary/algorithm.

Aamodt, A., & Plaza, E. (1994). Case-based reasoning : Foundational issues, methodological variations, and system approaches. AI Communications, 7(1), 39–59.

Alberto, Túlio C, Johannes V Lochter, and Tiago A Almeida. 2015. “Tubespam: Comment Spam Filtering on Youtube.” In Machine Learning and Applications (Icmla), 2015 Ieee 14th International Conference on, 138–43. IEEE.

Alvarez-Melis, David, and Tommi S. Jaakkola. “On the Robustness of Interpretability Methods.” arXiv preprint arXiv:1806.08049 (2018).

Apley, D. W. (n.d.). Visualizing the Effects of Predictor Variables in Black Box Supervised Learning Models, 1–36. Retrieved from https://arxiv.org/ftp/arxiv/papers/1612/1612.08468.pdf

Athalye, A., Engstrom, L., Ilyas, A., & Kwok, K. (2017). Synthesizing Robust Adversarial Examples. Retrieved from http://arxiv.org/abs/1707.07397

Biggio, B., & Roli, F. (2017). Wild Patterns: Ten Years After the Rise of Adversarial Machine Learning, 32–37. Retrieved from http://arxiv.org/abs/1712.03141

Breiman, Leo. 2001. “Random Forests.” Machine Learning 45 (1). Springer: 5-32.

Brown, T. B., Mané, D., Roy, A., Abadi, M., & Gilmer, J. (2017). Adversarial Patch, (Nips). Retrieved from http://arxiv.org/abs/1712.09665

Cohen, W. (1995). Fast effective rule induction. Icml. Retrieved from http://www.inf.ufrgs.br/~alvares/CMP259DCBD/Ripper.pdf

Cook, R. Dennis. “Detection of influential observation in linear regression.” Technometrics 19.1 (1977): 15-18.

Doshi-Velez, Finale, and Been Kim. 2017. “Towards A Rigorous Science of Interpretable Machine Learning,” no. Ml: 1–13. http://arxiv.org/abs/1702.08608.

Fanaee-T, Hadi, and Joao Gama. 2013. “Event Labeling Combining Ensemble Detectors and Background Knowledge.” Progress in Artificial Intelligence. Springer Berlin Heidelberg, 1–15. doi:10.1007/s13748-013-0040-3.

Fernandes, Kelwin, Jaime S Cardoso, and Jessica Fernandes. 2017. “Transfer Learning with Partial Observability Applied to Cervical Cancer Screening.” In Iberian Conference on Pattern Recognition and Image Analysis, 243–50. Springer.

Fisher, Aaron, Cynthia Rudin, and Francesca Dominici. 2018. “Model Class Reliance: Variable Importance Measures for any Machine Learning Model Class, from the ‘Rashomon’ Perspective.” http://arxiv.org/abs/1801.01489.

Fokkema, Marjolein, and Benjamin Christoffersen. 2017. Pre: Prediction Rule Ensembles. https://CRAN.R-project.org/package=pre.

Friedman, Jerome H, and Bogdan E Popescu. 2008. “Predictive Learning via Rule Ensembles.” The Annals of Applied Statistics. JSTOR, 916–54.

Friedman, Jerome H. “Greedy function approximation: a gradient boosting machine.” Annals of statistics (2001): 1189-1232.

Friedman, Jerome, Trevor Hastie, and Robert Tibshirani. “The Elements of Statistical Learning”. 2009. www.web.stanford.edu/~hastie/ElemStatLearn/

Fuernkranz, J., Gamberger, D., & Lavrač, N. (2012). Foundations of Rule Learning. Foundations of Rule Learning. https://doi.org/10.1007/978-3-540-75197-7_2

Goldstein, Alex, et al. “Package ‘ICEbox’.” (2017).

Goodfellow, I. J., Shlens, J., & Szegedy, C. (2014). Explaining and Harnessing Adversarial Examples, 1–11. http://doi.org/10.1109/CVPR.2015.7298594

Greenwell, Brandon. M., Boehmke, B. C., and McCarthy, A. J. (2018). A Simple and Effective Model-Based Variable Importance Measure, 1-27. Retrieved from http://arxiv.org/abs/1805.04755

Heider, Fritz, and Marianne Simmel. 1944. “An Experimental Study of Apparent Behavior.” The American Journal of Psychology 57 (2). JSTOR: 243–59.

Hooker, Giles (2004). Discovering Additive Structure in Black Box Functions. Knowledge Discovery and Data Mining, 575–580. http://doi.org/10.1145/1014052.1014122

Kahneman, Daniel, and Amos Tversky. 1981. “The Simulation Heuristic.” STANFORD UNIV CA DEPT OF PSYCHOLOGY.

Kaufman, Leonard, and Peter Rousseeuw. Clustering by means of medoids. North-Holland, 1987.

Kim, Been, Rajiv Khanna, and Oluwasanmi O. Koyejo. “Examples are not enough, Learn to Criticize! Criticism for Interpretability.” Advances in Neural Information Processing Systems. 2016.

Kim, Been, Rajiv Khanna, and Oluwasanmi O. Koyejo. “Examples are not enough, learn to criticize! criticism for interpretability.” Advances in Neural Information Processing Systems. 2016.

Koh, P. W., & Liang, P. (2017). Understanding Black-box Predictions via Influence Functions. Retrieved from http://arxiv.org/abs/1703.04730

Laugel, T., Lesot, M.-J., Marsala, C., Renard, X., & Detyniecki, M. (2017). Inverse Classification for Comparison-based Interpretability in Machine Learning. Retrieved from http://arxiv.org/abs/1712.08443

Letham, B., Rudin, C., McCormick, T. H., & Madigan, D. (2015). Interpretable classifiers using rules and bayesian analysis: Building a better stroke prediction model. Annals of Applied Statistics, 9(3), 1350–1371. https://doi.org/10.1214/15-AOAS848

Lipton, Peter. “Contrastive Explanation.” Royal Institute of Philosophy Supplements 27 (1990): 247-266.

Lipton, Zachary C. “The Mythos of Model Interpretability.” arXiv preprint arXiv:1606.03490, 2016.

Lundberg, Scott, and Su-In Lee. 2016. “An unexpected unity among methods for interpreting model predictions,” no. Nips: 1–6. http://arxiv.org/abs/1611.07478.

Martens, D., & Provost, F. (2014). Explaining Data-Driven Document Classifications. MIS Quarterly, 38(1), 73–99. http://doi.org/10.25300/MISQ/2014/38.1.04

Miller, Tim. 2017. “Explanation in Artificial Intelligence: Insights from the Social Sciences.” arXiv Preprint arXiv:1706.07269.

Nickerson, Raymond S. 1998. “Confirmation Bias: A Ubiquitous Phenomenon in Many Guises.” Review of General Psychology 2 (2). Educational Publishing Foundation: 175.

Papernot, Nicolas, et al. “Practical black-box attacks against machine learning.” Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security. ACM, 2017.

R. C. Holte (1993). Very simple classification rules perform well on most commonly used datasets. Machine Learning, 11, 63–91.

Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin (2018). “Anchors: High-precision model-agnostic explanations.” AAAI Conference on Artificial Intelligence.

Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin. “Why should i trust you?: Explaining the predictions of any classifier.” Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. ACM, 2016.

Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin. 2016. “Model-Agnostic Interpretability of Machine Learning.” ICML Workshop on Human Interpretability in Machine Learning, no. Whi.

Shapley, Lloyd S. 1953. “A Value for N-Person Games.” Contributions to the Theory of Games 2 (28): 307–17.

Staniak, Mateusz and Przemyslaw Biecek (2018). “Explanations of Model Predictions with live and breakDown Packages.” ArXiv e-prints. 1804.01955, <URL: https://arxiv.org/abs/1804.01955>.

Strumbelj, Erik, Igor Kononenko, Erik Štrumbelj, and Igor Kononenko. 2014. “Explaining prediction models and individual predictions with feature contributions.” Knowledge and Information Systems 41 (3): 647–65. doi:10.1007/s10115-013-0679-x.

Su, J., Vargas, D. V., & Kouichi, S. (2017). One pixel attack for fooling deep neural networks. Retrieved from http://arxiv.org/abs/1710.08864

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., & Fergus, R. (2013). Intriguing properties of neural networks, 1–10. http://doi.org/10.1021/ct2009208

Wachter, S., Mittelstadt, B., & Russell, C. (2017). Counterfactual Explanations without Opening the Black Box: Automated Decisions and the GDPR, (1), 1–47. https://doi.org/10.2139/ssrn.3063289

Yang, H., Rudin, C., & Seltzer, M. (2016). Scalable Bayesian Rule Lists, 31. Retrieved from http://arxiv.org/abs/1602.08610

Zhao, Qingyuan, and Trevor Hastie. “Causal interpretations of black-box models.” Journal of Business & Economic Statistics, to appear. A DEPTH AND EXPOSURE TIME (2017).

Štrumbelj, Erik, and Igor Kononenko. 2011. “A General Method for Visualizing and Explaining Black-Box Regression Models.” In International Conference on Adaptive and Natural Computing Algorithms, 21–30. Springer.

R Packages Used for Examples

base. R Core Team (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

data.table. Matt Dowle and Arun Srinivasan (2019). data.table: Extension of data.frame. R package version 1.12.0. https://CRAN.R-project.org/package=data.table

dplyr. Hadley Wickham, Romain François, Lionel Henry and Kirill Müller (2018). dplyr: A Grammar of Data Manipulation. R package version 0.7.8. https://CRAN.R-project.org/package=dplyr

ggplot2. Hadley Wickham, Winston Chang, Lionel Henry, Thomas Lin Pedersen, Kohske Takahashi, Claus Wilke and Kara Woo (2018). ggplot2: Create Elegant Data Visualisations Using the Grammar of Graphics. R package version 3.1.0. https://CRAN.R-project.org/package=ggplot2

iml. Christoph Molnar (2019). iml: Interpretable Machine Learning. R package version 0.8.1. https://CRAN.R-project.org/package=iml

knitr. Yihui Xie (2018). knitr: A General-Purpose Package for Dynamic Report Generation in R. R package version 1.21. https://CRAN.R-project.org/package=knitr

libcoin. Torsten Hothorn (2018). libcoin: Linear Test Statistics for Permutation Inference. R package version 1.0-2. https://CRAN.R-project.org/package=libcoin

memoise. Hadley Wickham, Jim Hester, Kirill Müller and Daniel Cook (2017). memoise: Memoisation of Functions. R package version 1.1.0. https://CRAN.R-project.org/package=memoise

mlr. Bernd Bischl, Michel Lang, Lars Kotthoff, Julia Schiffner, Jakob Richter, Zachary Jones, Giuseppe Casalicchio, Mason Gallo and Patrick Schratz (2018). mlr: Machine Learning in R. R package version 2.13. https://CRAN.R-project.org/package=mlr

mvtnorm. Alan Genz, Frank Bretz, Tetsuhisa Miwa, Xuefei Mi and Torsten Hothorn (2018). mvtnorm: Multivariate Normal and t Distributions. R package version 1.0-8. https://CRAN.R-project.org/package=mvtnorm

NLP. Kurt Hornik (2018). NLP: Natural Language Processing Infrastructure. R package version 0.2-0. https://CRAN.R-project.org/package=NLP

ParamHelpers. Bernd Bischl, Michel Lang, Jakob Richter, Jakob Bossek, Daniel Horn and Pascal Kerschke (2018). ParamHelpers: Helpers for Parameters in Black-Box Optimization, Tuning and Machine Learning. R package version 1.11. https://CRAN.R-project.org/package=ParamHelpers

partykit. Torsten Hothorn and Achim Zeileis (2018). partykit: A Toolkit for Recursive Partytioning. R package version 1.2-2. https://CRAN.R-project.org/package=partykit

pre. Marjolein Fokkema and Benjamin Christoffersen (2018). pre: Prediction Rule Ensembles. R package version 0.6.0. https://CRAN.R-project.org/package=pre

readr. Hadley Wickham, Jim Hester and Romain Francois (2018). readr: Read Rectangular Text Data. R package version 1.3.1. https://CRAN.R-project.org/package=readr

rpart. Terry Therneau and Beth Atkinson (2018). rpart: Recursive Partitioning and Regression Trees. R package version 4.1-13. https://CRAN.R-project.org/package=rpart

tidyr. Hadley Wickham and Lionel Henry (2018). tidyr: Easily Tidy Data with ‘spread()’ and ‘gather()’ Functions. R package version 0.8.2. https://CRAN.R-project.org/package=tidyr

tm. Ingo Feinerer and Kurt Hornik (2018). tm: Text Mining Package. R package version 0.7-6. https://CRAN.R-project.org/package=tm